Python Scripting in the ArcGIS Environment:

Creating a Point Feature Class on SDE

ITC 7976 Directed Study Fall 2009
Final Project Report
December 2009

Graduate Student: Claire Palmer
Email: clairempalmer@gmail.com

Supervising Instructor: Dr. Glenn Hazelton
Email: g.hazelton@neu.edu

Python for ArcGIS and Open Source GIS
MPS-GIT ITC 7976 Directed Study Fall 2009
Northeastern University

College of Professional Studies

Warren Group Parcel Points (orange)

Towns of
Savoy and Rowe, Massachusetts

SETEZ . wWia2009 _SaNOYROWE_BASIC_PTS

I‘__F‘_I

M8 Towns (Polygons)

O
SETE.NT_STREETS_0902

Bssessors Parcels (Level 00
| -

Figure . WG2009_SAVOYROWE_BASIC PTS Overlaid With NAVTEQ streets linework

Table of Contents

Python Scripting in the ArcGIS Environment:

Creating a Point Feature Class on SDE.......ccooiiiiiii e 4
L. INErOAUCTION coeie e 4
2. Data Collection and Pre-proCeSSing. . .iu i e e e e 4
3. Code Structure -- Tools and Methods........c.ooeiiiiiiiiiii e 6
4. SCIIPT DU G NG et 8
5. SUMMArY Of RESUIES. ittt e eae e 11
6. FUtUre Code IMProVemMENtS. ..ttt e e e ae e ens 12
7. Appendix A. Generate Warren Group POINtS ..oocvvviiiiiiiiiiii e 13

Python Scripting in the ArcGIS Environment:
Creating a Point Feature Class on SDE

Introduction

This report describes the ArcGIS tools and methods used in a Python script to create a
point feature class from a table of LAT/LON values inside an SDE geodatabase. This feature
class could serve as an additional resource dataset for the 911 Project at MassGIS to perform
QA/QC on streets listed in the Master Street Address Guide table (MSAG) that are missing from
the NAVTEQ streets dataset. Typically, GIS professionals generate points from a table of
LAT/LON values by selecting the “Display XY data” option from inside ArcMap. Although this
method is quick and simple, it offers no flexibility for selecting subsets of rows or columns for
the output. This becomes problematic when dealing with large datasets with many fields; for
example, the Warren Group 2009 table of parcel names and transactions for Massachusetts
used for this project contains 2,752,102 records and 113 fields. Utilizing a point dataset of 2
million records for QA/QC is possible, but hardly preferable to a dataset comprised of only the
pertinent columns and rows (no nulls or duplicates) for the task at hand. A Python script, by
comparison, is fully customizable to end-user requirements and can be crafted to perform the

same geoprocessing routines executed by ArcGIS.

Data Tables and Pre-processing

In addition to creating a working Python script that produces a functional feature class,
an objective for this final project was to craft the script to work in an SDE environment. Nearly
all of the ArcGIS python script examples provided by ESRI reference shapefiles for source and
output datasets. However, because MassGIS stores many of its official datasets on SDE, it made
sense to continue to work in the SDE environment and to explore any scripting differences
(syntactical or otherwise) that may arise between SDE data and stand-alone shapefiles.

The script processes a single data table — a statewide listing of parcel attributes
produced by Warren Group current through 2009 (SETB2.WG2009_STATE_ATTRIB). The table

lists every parcel address in Massachusetts, including LAT/LON values in decimal degrees to

locate the parcel geographically. There are a significant number of parcel records with “0.0”
LAT/LON values, which typically indicates that the parcel is located on a newly constructed
street. To serve the needs of the 911 Project, | wanted to generate only unique parcel
(“street”) names for each town and to create a point for each street based on its LAT/LON
value. The remaining streets with “0.0” LAT/LON values would be exported into a separate
table as a QA/QC resource for “new” streets.

For testing purposes, | created a subset of the SETB2.WG2009_STATE_ATTRIB table that
included only the towns of Savoy and Rowe in Western Massachusetts. This table,

SETB2.WG2009_SAVOYROWE, contained 1772 records. [See Figure 2.]

Figure 2. SETB2.WG2009_SAVOYROWE with Values

OBJECTID' | PROPID | MAPREF | SOURCE | mACTVFL | ciry | STREET | sTium LAT Lon STATE OWNER1 | FLAG |
L 1400 4281401 |M-009 B:004 120 P Savoy Brier Rd 78 42 60501 -F2.98501 M4 Irene=Papp
L 1376 2736537 M:009 B.001 L:44 [Savoy Brier Rdl 13 4260553 -72.89226 |M& Aller=Carlow
| 1587 2736559 M:009 B0 Li14 P Savoy Brier Rdl 127 4280657 -72.95229 |MA Peter=Frank
L 10 3971183 |M-008 B:001 L83 P Savoy Brier Rd B7 42 B0S0S -72 8885 MA Harold=Kemp
| 1540 2736157 |M:009 B:001 Li35 P Savoy Brier Rel 53 4260504 -7286765 |MA Aaron=Gazaile
| 1542 2736167 |M:009 B:004 L-22 P Savoy Brier Rd 142 42 BOBE -72 95159 |MA Steven=Serre
L 1607 4281369 M:009 B:001 L:25 P Savioy Brier Rd i a 0| Craig=Rushesam
| 1546 2736207 |M:009 B:004 L:21 P Savoy Brier Rdl 130 426088 -7295159 |MA Brian K=Carlow
L 300 4281365 |M-008 B:001 L7 P Savoy Brier Rd (Rear) o a 0/ns Aaron=Gazaile
| 297 4251337 M:007 B:002 L:59 P Savioy Brown Rd a a 0 |hd Edhward C=Marko
| 2085 4251325 M:006 B:002 L1412 P Savoy Brown Rd a a 0 A Steven=Blazejewski
L 28 4281327 M:006 B:002 L:B6 P Savioy Brovwn Rd i a 0| Frances=Blazejevwski
| 708 F243101 S T Savioy Brown Rd a a 0 |hd A&len D=Hazkins
L 517 4281338 |M-007 B:002 LB P Savoy Brown Rd o a 0/ns Falph=Lambert
| 1392 4251339 M:007 B:002 L:60 P Savioy Brown Rd a a 0 |hd A&len D=Hazkins
| 1156 4251342 M:007 B:002 L:73 P Savoy Brown Rd (rear) a a 0 A Joseph J=Alibozek=Jr
L 218 4281341 M:007 B:002 L:73 P Savioy Broven R (rear) i a 0| Carl=Lambert

As soon as | was able to get the script to produce a point feature class from the above
table, | discovered that the feature class failed to draw within the spatial extent for
Massachusetts in ArcMap. Troubleshooting this projection issue is further explained in
Debugging section of this report. As a workaround to the problem, | was pointed to a nearly
identical dataset on SDE that contains X/Y coordinate values for NAD83 Massachusetts State
Plane Meters, SETB2.WG2009_STATE_BASIC. A subset of this table for Savoy and Rowe was

created for testing purposes. [See Figure 3.]

Figure 3. SETB2.WG2009_SAVOYROWE_BASIC with Values

OBJECTID' | PROPID | MAPREF09 |_emy | STREET |_stum | X | ¥ | SOURCE | macTVFL OWHER ZIPCODE | FLAG |
N 579| 4002395 MO406E0000L0003 Rowe Bear Swamp Re 1] 837062761034 939513.197242 P Bear Swamp Power CoLLC 01367 1
N 18d| 4733660 [M.O407 B0000 L0045 Rowe Erittingham Hil Re 0 53340.364888 37645 558267 |F Genrge F Veher 01367
N 1578| 4002235 |M0407 00000043 Rowe Erittingharm Hil Rel 37 83127 649538 938175 81346 P Juiith Pierce 01367
N 1610| 4002367 |MO407 B0000 L0008 Rows Erittingham Hil Re 72 B2815.540874 536617 563578 P John F Rossi 01367
N 1503| 4002230 [M.0407 B0000 L0040 Rowe Erittingharm Hil Re a3 82703519326 933919.126855 P Kenneth Fensky 01367
N 794| 4002366 |M.0407 BOOOOL.OO08 Rowe Brittingham Hil Re 54 £2942.482927 938363 219335 P John F Rossi 01367
N 1753| 4002241 [MO407 BO000 L0044 Rowe Erittingham Hil Re 0 53340.364888 37645 558267 |F M Arlens Andognini 01367
N 1416| 4002231 |M0407 B0000L0041 Rowe Erittingharm Hil Rel &l 82775.692472 935744.341383 P Barbara F Davisonson RET | 01367
N 04| 4002228 [MO4O7 BO000 L0035 Rowe Erittingham Hil Re a3 B2536.050001 S3RR1 230603 P James E Sousa 01367 1
N 638| 4002390 |M.0407 B000DL:000E Rowe Erittingharm Hil Re 14 83211619293 937524 386036 P Wiarren Kalaus 01367
N 1154| 4002234 |M0407 0000 L0046 Rowe Brittingham Hil Re 0 83340.364883 937645 559287 P Barbara F Davisonson RET | 01367
N 1032| 4002367 [MO407 B0000 LODDT | Rowe Erittingham Hil Re 24 B3175.404325 37477 567608 P Donald 4 Rice 01367
N 1247| 4002058 |M:0404 B0000L0029 Rowe Erown Rd ® 83723.719232 940751 489804 P Highlands RT 01367
N 461| 4002078 [M0202 B:0000 L0052 Rowe Erown Rel 0 B3733.405842 540674 525741 [P Highlandis T 2 01367 1
N #03| 3117460 [M.0404 B000DL:0030 Rowe Erown Rd 0 8374330825 940587 716375 P Highlands RT 01367
N 981| 3117427 |M0201 BO000L.007 Rowe Corner Pond Rd 0| 837062761034 939513.197242 P Rowve Town OF 01367 1
N 153 | 3117403 Rowe County Branch Rel 12 63743 661775 38335 360405 |5 T Robert J Clancy 01367 i
N S66| 4001880 |M.0202E:0000L:0035 Rowe Caunty Rel 143 83748.089823 939603 353344 |P Jean M Bernhardt 01367
N 575| 4002232 [M.O4O7 B:0000 L0042 Rowe Courty Rel 0 53390.326018 S37779.331905 | Barbara F Davisonson RET 01357
] 1755 4002264 [M0407 B0000 L0051 | Rowe Caunty Rel 0 83390.328013 937779.331905 P Jack Hayden 01367

As a means for flagging records to be processed into a point feature class, the column

“FLAG” was added to the test input tables. No other pre-preprocessing was necessary.

Code Structure — Arcgisscripting Tools and Methods

The bulk of this project was the process of piecing together the Arcgisscripting methods

and tools that | had been exposed to in the class assignments and from various tasks at work.

Eventually, | was able to increasingly absorb the scripting examples posted on the ESRI on-line

forums, resource manuals and ArcGIS Desktop Help.

The order of processes that produce a functional point dataset and an error-free script

are outlined as follows:

Part 1
1. Run SQL to update FLAG column & create output table of new streets.
Part 2
2. Create an empty feature class.
3. Add fields to the empty feature class.
Part3
4. Open SearchCursor on input table.
5. Open InsertCursor on output feature class.
6. Loop through the input table:
a. create a point object from LAT/LON values

b. assign the values from a unique ID field to a field in the output feature class

c. assign the point object and unique ID to a row object
d. insert the row object into the output feature class
Part 4

7. Run SQL to copy the attributes from the input table to the output feature class,

based on the unique ID inserted in the previous step.

The status messages from a successful run of the script printed to the PythonWin Interactive

window are shown in Figure 4.

Figure 4. PythonWin Interactive Window Messages From a Successful Run

PythonWin - [Interactive Window] g

& Bl Edt vew Took window el -4 x
DEHd %s 22 oo BBIRS @7

Pythonin 2.5 1 (r251 54063, Apr 18 2007, 08:51.08) [MSC v 1310 32 bit (Intel)] on wind2 =~
Portions Copyright 1984-2006 Mark Hammond - see 'Help/About Python'in' far further copyright information

>33

Fre-Frocessing Uarren Group Table....

Deleted data table: SETEZ.WGZ009_SAVOVROWE_BASIC_NEW

Execute SQL Statement: UPDATE SETBZ.WGZ009_SAVOYROWE_EBASIC SET FLAG = NULL
ran sugessfully.

Execute SQL Statement: UPDATE SETEZ.WGZ009_SAVOYROVE BASIC SET FLAG = 1 WHERE (street, ohisctic) IN (select street, min(ohiectid) FROM
SETBZ.WG2009_SAVOVROWE_BASIC UHERE x <> O GROUP BY town_id, street)
ran sucessfully.

Executs SQL Statement: CREATE TABLE SETBZ.WGZO09_SAVOVROWE BASIC NEW s (SELECT DISTINCT town id, street, ¥, v FROM SETBZ.WGZO0S_SAVOTROVE BASIC WHERE
street NOT IN (SELECT street FROM SETBZ.WGZ00S_SAVOYROWE_BASIC VHERE flag = 1 GROUP BY town_id, street)) ORDER BY town_id, street
ran sucessfully.

Commited Transaction

Done prepping Uarren Group teble.

Creating & new feature class

feature class created

adding fislds to SETBZ.WGZ009_SAVOTROWE BASIC PTS

hdding: PROPID: LONG (10)
Adding: MAFREFOS: TEXT (25)
Adding: SOURCE: TEXT (1)
Adding: INACTVFL: TEXT (1)
Adding: COUNTY: TEXT (15)
Rdding: CITY: TEXT (20)

g TiTE: TEYT
Adding: PROPID: LONG (10) ~
Adding: MAPREFO9: TEXT (25)

Ldding: SOURCE: TEXT (1)

Adding: IMACTVFL: TEXT {1)

Adding: COUNTY: TEXT (15)

Adding: CITY: TEXT (20)

Adding: STATE: TEXT (2]

Adding: STNUM: LONG (10

Adding: STNUMEXT: TEXT (5)

Ldding: STREET: TEXT (25)

Adding: ZIPCODE: TEXT (S)

Adding: LAT: DOUBLE (8]

Adding: LON: DOUBLE (&)

Ldding: OWNER: TEXT (25

Adding: GC_SOURCE: TEXT (15)

Adding: #Q FT: DOUBLE (25)

Adding: STATEUSE: TEXT (3)

Rdding: REALTOWM: TEXT (35)

Adding: TOWN_ID: SHORT {5)

Adding: FLAG: SHORT (1)

done adding fields to: SETB2.WG2009_SAVOYROVE BASIC_PTS

Frocessing LAT LON values to points....

saving points to: SETBZ.WGZO0OI_SAVOYROWE BASIC_PTS

done saving points to: SETBZ.WG200S_SAVOVROWE_BASIC_PTS

#+ Cursor and row have been deleted #*%

copying attributes

ran sucessfully.

Corwited Transaction

done updating attributes
done processing script

[o [oooso oor

A list of all the attempted methods and tools in the effort to achieve a working script
paints a different picture — one that sheds more light on the trial and error nature of the

programming process:

Part 1

the INCLUDEFIELDS fields:
4. Run SQL to update FLAG column & create output table of new streets.
Part 2
7. Create an empty feature class.

9. Add fields to the empty feature class.

Part3

10. Open SearchCursor on input table.

11. Open InsertCursor on output feature class.

12. Loop through the input table:

a. create a point object from LAT/LON values

d. assign the point object and unique ID to a row object
e. insertthe row object into the output feature class

15. Run SQL to copy the attributes from the input table to the output feature class,
based on the unique ID inserted in the previous step.

The factors that contributed the most to my progress with the script were the error
messages | received from the except blocks and dividing the script into sections and sub-tasks
for each section. A typical scripting cycle thus included:

1) Research why the script won’t work

2) Borrow examples from similar questions posted on forums

3) Learn more about the nature of my bug and my approach

4) Discover another tool/method to use that | hadn’t thought of before

5) Implement the new idea

6) Research why the script won’t work

Some very helpful resources found during this trial-and-error process were:

e The “Differences Between Geoprocessor Versions” ESRI article at:
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfim?TopicName=Differences betwee
n_geoprocessor_versions

e Pages 4-7 of the “Python Scripting — Advanced Techniques” PDF where | learned about
the ArcSDESQLExecute object: http://www.tucsonaz.gov/gis/downloads/tw 166.pdf

e “Golden Rules for Debugging Python” at:
http://www.ollivier.co.nz/support/python.shtm

e “Tips and tricks - Error handling in Python script tools”:
http://blogs.esri.com/Dev/blogs/geoprocessing/archive/2008/12/01/Tips-and-tricks-

2D00 -Error-handling-in-Python-script-tools.aspx

The “ArcSDESQLExecute” object was particularly useful for getting me over the hurdles |
was struggling with in parts 1 & 4 of the code by allowing me to send an SQL statement directly
to Oracle on SDE to process the data. This method executed much faster than instantiating
cursors and rows, bypassing the need for the “MakeQueryTable” and “UpdateCursor” tools that
didn’t seem to accomplish what | needed to do. Having the ability to utilize the
ArcSDESQLExecute object was a big advantage to working in an SDE environment.

Another useful technique was the implementation of a multi-dimensional array (“matrix” in
Python lingo) in part 2 of the script. This functioned as a container for the field names and
settings to be added to the newly created point feature class. By wrapping each of the matrix
elements into a FOr loop, | was able to write three lines of code to execute the “AddField” tool
for each item in the matrix. This saved me from having to repeat the “AddField” code for each

individual field.

Script Debugging

The articles on debugging mentioned in the previous section were a huge help in
optimizing the error handling in my script. | was able to parse out the geoprocessing errors
from the python/system-specific errors and include the ever-important line number and error
message where the break occurred. Before adding the try/except blocks, the script
occasionally crashed PythonWin without breaking out of the process or returning an error.
Initializing my cursor and row objects to None solved the problem.

Setting the spatial reference for the point feature class was another challenge |
encountered. The feature class created from the SETB2.WG2009_SAVOYROWE table
containing LAT/LON coordinates in decimal degrees failed to draw within the spatial extent for
Massachusetts. [See Figure 5.] Instead, it would project south into Rhode Island or east into
Bermuda. Multiple attempts to define the projection, then reproject the feature class using the
ArcToolbox projection tools failed to set the feature class’s spatial reference to “NAD 1983
StatePlane Massachusetts Mainland FIPS 2001”.

Figure 5. WG2009_SAVOYROWE _PTS Fails to Project Into Mass State Plane Meters
IR e -]

1T B o o g fame R T - i Lt e [rae— T CREr ST - o AU I eG4 AAAA PSP —
= - - N it 1

T p—— - ~ NG

Rl BEET Y
-

I A ~EuEer
Ivf L EnEes

Petd] 1o A e Az msp A d* 2 ORGP E = e r AT . DR RN St M L A A Y B

As described in the Data Tables and Pre-processing section of this report, this problem
was solved by using an alternative table, SETB2.WG2009_SAVOYROWE_BASIC, which contains
X/Y values pre-converted into NAD 1983 StatePlane Massachusetts Mainland FIPS 2001
coordinates. The resulting point feature class draws in ArcMap in the correct location, though
ArcMap returns a warning that the feature class is missing spatial reference information. [See
Figure 6.]

10

Figure 6. WG2009_SAVOYROWE BASIC_PTS Projects Correctly Even Though It Lacks Spatial Reference
Information

TEEE LR # o DR 1~ S A sy v aAddas o 18 s

L

s L 4

a

Although | got the results | wanted by using the alternate table, | was not satisfied that |
hadn’t solved the problem in the script itself. All of the ESRI examples for the
CreateFeatureClass tool that | had researched specified a parameter for a template feature
class on which to base the schema (spatial reference and field settings) for the new feature
class. In my case, there were no existing feature classes on SDE upon which to model the
schema for the new feature class | wanted. My attempts to code-in a separate spatial
reference object and pass it in as a parameter for the new feature class were unsuccessful.
Likewise, my Google search to “Create Feature Class without template” did not return any
information. | sent an email to Jeff Bigos at ESRI for advice on how to approach the problem
but did not receive a reply. As | am astounded that this fairly common scenario has not been
previously addressed by anyone in the cyberspere, | intend to pursue a solution on the ESRI

forums in the future.

Summary of Results

The point feature class, SETB2.WG2009_SAVOYROWE_BASIC PTS, contains a set of 63
records — a point for each distinct street name. Although the points plotted on street
centerlines, the value for STREET_NAME in the point feature class did not match that of the

NAVTEQ streets linework. [See Figure 1 at the beginning of this report.] This discrepancy is

11

attributed to the non-reliable nature of Warren Group LAT/LON values. In relation to the scope
of this final project, the incorrect point data was of no concern.

Once the script succeeded in producing a functional feature class from the test tables, it
was run on the full version table containing records for the entire state (2,752,102 records). The
script was run in the evening and was still in process the next morning. It was discovered that
the script hadn’t finished due to a time-out error to the database connection. The script was
killed, and inspection of the data table showed that the FLAG column was updated to “1” where
appropriate, but no new feature class on SDE had been created. Further investigation into how

to optimize the script for large datasets would be helpful for future versions.

Future Code Improvements

In addition to coding a solution to set a spatial reference for the feature class and to
optimize the script to handle large datasets, the script would achieve improved functionality if
it was added as a tool in ArcToolbox. At minimum, the code would need to accept user
parameters for the input table and output feature class name, spatial reference, and field
settings. Because the current script fails if the input table does not contain a FLAG field, a
future version could check for the existence of a FLAG field, and, if not, add it to the input table.

| found the ESRI Arcgisscripting forum to be very helpful for finding bits of code for
enhancing the script. One example is the GetCount tool that returns the total records in a

dataset: http://forums.esri.com/Thread.asp?c=93&f=1729&t=292293&mc=6 . After a handful

of visits to the ESRI forum, | was extremely satisfied to find that my fluency with the language
was improving. Perusing the forum was a great learning experience.

Overall, | am very pleased with the results of this scripting project. While there is still
much to learn, | feel that | have broken the “newbie” barrier of programming. Having navigated
the “unpredictable weather” of the full programming cycle — prototyping, implementing,

debugging, and research — | feel | have gained my sea legs for future projects.

12

Appendix A.
Generate Warren Group Points
gen_WG_PTS.py

HH.
HH

Tool Name: Generate WG points

Source Name: gen_WG_PTS.py

ArcGIS Version: ArcGIS 9.3

Author: Claire Palmer (MassGIS)

Last Updated: 12/08/2009

By: Claire Palmer (MassGlIS)

Hit

Required Argumuments:

- SDE.SETB Warren Group data table: WG.WG2009_STATE_ATTRIB
- for testing: SETB2.WG2009_SAVOYROWE

#Hit

Optional Arguments:

- None

Hit

Description:

Creates Point Feature Class of unique parcel names from the
WG.WG2009_STATE_ATTRIB feature class on SDE

#Hit

Purpose:

For use as a reference dataset for locating street names listed in the MSAG
that are not included in the NAVTEQ streets dataset

Hit

HH
HH

Import system modules

import sys, string, os, arcgisscripting

import ArcGIS_AddMsgAndPrint

AddMsgAndPrint = ArcGIS_AddMsgAndPrint. AddMsgAndPrint

Create the Geoprocessor object
gp = arcgisscripting.create(9.3)

traceback variables for exception handling

def trace():
import traceback
tb = sys.exc_info()[2] # get the traceback object
tbinfo = traceback.format_tb(tb)[0] # tbinfo contains the error's line number and the code

line = tbinfo.split(", ")[1]

filename = sys.path[0] + os.sep + "gen_WG_PTS.py"
synerror = traceback.format_exc().splitlines()[-1]
return line, filename, synerror

Load required toolboxes...
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Data Management Tools.tbx")

Set the Geoprocessing environment...
gp.configkeyword = "USERS"
gp.OverWriteOutput = True

13

Set workspace
gp.workspace = ("Database Connections\\setb2@phoenix.sde")
sdeConnExecute = gp.CreateObject("ARCSDESQLEXECUTE","Database Connections\\setb2@phoenix.sde")

Set variables for input Warren Group data table, "new streets" output data table
real: WG.WG2009_STATE_ATTRIB (2,752,102 records), test: SETB2.WG2009_SAVOYROWE (1772 records)
###t NOTE: this script assumes that input table has a FLAG field of [NUMBER(1)]

#input_tbl = "SETB2.WG2009_STATE_ATTRIB"

#input_tbl = "SETB2.WG2009_STATE_BASIC"

#input_tbl = "SETB2.WG2009_SAVOYROWE" # LAT/LON in decimal degrees (geographic)

input_tbl = "SETB2.WG2009_SAVOYROWE_BASIC" # LAT/LON in MA state plane meters (projected)

output_tbl =input_tbl +"_NEW" # output table of "new" street names (no lat/lon)

output_fc =input_tbl +"_PTS" # output feature class

H

Led

PART 1

Prep the Warren Group data table (SETB2.WG2009_SAVOYROWE) before processing :
0) Clean Up

a) Delete output table if Exists

b)Reset FLAG = NULL

1) Tag only one occurance of a distinct town_id, street that has positive lat/lon values: "existing" streets
SetFLAG=1

2) For the rest ("new streets"):

Create table for distinct town_id, street records where lat/lon =0

3) Group SQL into a list

4) Run SQL using the sdeConnExecute object created in the connections section

#

H

L

print "+++++H+HH N
print "Pre-Processing Warren Group Table....\n"
print "+ttt N

Delete output table if already exists

if gp.Exists(output_tbl):
gp.Delete_Management(output_tbl)
print "Deleted data table: " + output_tbl

#SQL to Reset the FLAG column
sql_reset = "UPDATE " + input_tbl + " SET FLAG = NULL"

#SQL to Update FLAG = 1 for "existing" streets

#sql_flagl = "UPDATE " + input_tbl + " SET FLAG = 1 WHERE (street, objectid) IN (select street, min(objectid) FROM
"+ input_tbl + " WHERE lat <> 0 GROUP BY town_id, street)"

#SQL for SAVOYROWE_BASIC

14

sql_flagl = "UPDATE " + input_tbl + " SET FLAG = 1 WHERE (street, objectid) IN (select street, min(objectid) FROM
"+ input_tbl + " WHERE x <> 0 GROUP BY town_id, street)"

SQL to create table for "new" streets

#sqgl_flag2 = "CREATE TABLE " + output_tbl+" as (SELECT DISTINCT town_id, street, lat, lon FROM " + input_tbl +
" WHERE street NOT IN (SELECT street FROM " + input_tbl + " WHERE flag = 1 GROUP BY town_id, street)) ORDER
BY town_id, street"

#5QL for SAVOYROWE_BASIC

sql_flag2 = "CREATE TABLE " + output_tbl +" as (SELECT DISTINCT town_id, street, x, y FROM " + input_tbl +"
WHERE street NOT IN (SELECT street FROM " + input_tbl + " WHERE flag = 1 GROUP BY town_id, street)) ORDER BY
town_id, street"

Group all SQL statements into a list
SQLList = [sql_reset, sql_flagl, sql_flag2]

print "+ttt N

try:
For each SQL statement passed in, execute it.
for sql in SQLList:
print "Execute SQL Statement: " + sql
try:
Pass the SQL statement to the database.
sdeReturn = sdeConnExecute.Execute(sql)
except Exception, ErrorDesc:
print ErrorDesc
sdeReturn = False

If the return value is a list (a list of lists), display each list as a row from the
table being queried.
if isinstance(sdeReturn, list):
print "Number of rows returned by query: " + len(sdeReturn), "rows"
for row in sdeReturn:
print row
print "+ N
else:
If the return value was not a list, the statement was most likely a DDL statment.
Check its status.
if sdeReturn == True:
print "ran sucessfully."
print "+++++HHHHH N
else:
print "FAILED."
print "+++++++H+HHH AN

Commit the changes

sdeConnExecute.CommitTransaction()

print "Commited Transaction\n"

print "Done prepping Warren Group table."

print "++++++H+HHH N

except Exception, ErrorDesc:
print Exception, ErrorDesc

15

except:

print "Problem executing SQL."

#

PART 2

Create a new Feature Class :

0) Clean Up

a) Delete output feature class if Exists

1) Create a new 'blank’ feature class

a)create a spatial reference object

b) Use a projection file to define the spatial reference's properties
c) Run CreateFeatureClass using the spatial reference object

2)Set up a NEW_FIELDS array

#
#

H

3) Add fields and values to output_fc

i

print "+ttt N

print "Creating a new feature class... \n"
print "+++++H+HHH RN

try:

Delete output feature class if already exists
if gp.Exists(output_fc):
gp.Delete_Management(output_fc)
print "Deleted feature class: " + output_fc + "\n"
print "+++++++HHHHH N

Create a new point feature class
Create a spatial reference object
didn't work: "Geoprocessing error on line 187 of E:\Python\final_project\gen_WG_PTS_7a.py"

spatialRef = gp.CreateObject("spatialreference")

Use a projection file to define the spatial reference's properties
spatialRef.CreateFromFile(r"C:\\Program Files\\ArcGIS\\Coordinate Systems\\Projected Coordinate

Systems\\State Plane\\NAD 1983\\NAD 1983 StatePlane Massachusetts Mainland FIPS 2001.prj")

CreateFeatureClass_management (out_path, out_name, geometry_type, template, has_m, has_z,

spatial_reference, config_keyword, spatial_grid_1, spatial_grid_2, spatial_grid_3)

Create new fields array # [FIELD_NAME, FIELD_TYPE, FIELD_PRECISION, FIELD_SCALE, FIELD_LENGTH]

gp.CreateFeatureclass(gp.workspace, output_fc, "POINT", "", "", "", spatialRef)
gp.CreateFeatureclass(gp.workspace, output_fc, "POINT")

print "feature class created "
print "+++++tt bbbt bbb bbb bbb\

print "adding fields to " + output_fc + " ...\n"
print "+ttt D

NEW_FIELDS = [

#Hi ["PROPID", "LONG", "", "","10"], #0
#H ["MAPREF", "TEXT", "","", "25"], #1
#it ['SOURCE", "TEXT", "","", "1"], #2

#it ["INACTVFL", "TEXT", ", """, "1"], #3

16

["COUNTY", "TEXT","","", "15"], #4

["CITY", "TEXT","", " "20"], #5

['STATE", "TEXT", "™, ", "2"], #6

['STNUM", "LONG","","", "10"], #7
["STNUMEXT", "TEXT","","", "5"], #8
['STREET", "TEXT", """, "25"], #9

["ZIPCODE", "TEXT","","" "5"], #10
['LAT","DOUBLE", "38","8", "38"], # 11
["LON", "DOUBLE", "38","8","38"], # 12
["OWNER1","TEXT","" " "25"], #13
["OWNERILN", "TEXT", """ "25"], # 14
["OWNER2","TEXT","" " "25"], #15
["OWNER2LN", "TEXT", ", "", "25"], # 16
["STATEUSE", "TEXT", "™, ", "3"], #17
["YEARBUILT", "TEXT", """, "4"], # 18
["REALTOWN", "TEXT","","", "35"], # 19
["TOWN_ID", "SHORT","", "" "5"], # 20
["FLAG", "SHORT","","" "1"] #21

]

Create new fields array # for processing WG2009_SAVOYROWE_BASIC table

NEW_FIELDS = [
["PROPID", "LONG", "", "", "10"], #0
["MAPREF09", "TEXT", "", "", "25"], # 1
["SOURCE", "TEXT", "", """, "1"], #2
["INACTVFL", "TEXT", "","", "1"], #3
["COUNTY", "TEXT","", """, "15"], #4
["cITy”, "TEXT", ", ", "20"], #5
["STATE", "TEXT", "","", "2"], #6
["'STNUM", "LONG", ", "", "10"], #7
["STNUMEXT", "TEXT", "", ", "5"], #8
["STREET", "TEXT","","", "25"], #9
["ZIPCODE", "TEXT", "", "", "5"], #10
["LAT", "DOUBLE", "19", "10", "8"], # 11
["LON", "DOUBLE", "19", "10", "8"], # 12
["OWNER", "TEXT", "", "", "25"], #13
["GC_SOURCE", "TEXT", "", "", "15"],# 14
['SQ_FT", "DOUBLE", "", "", "25"], # 15
["STATEUSE", "TEXT", "","", "3"], #16
["REALTOWN", "TEXT", "", ", "35"], # 17
["TOWN_ID", "SHORT", "", "", "5"], # 18
["FLAG", "SHORT", "", "", "1"] #19
]

Add Fields to output_fc
AddField_management (in_table, field_name, field_type, field_precision, field_scale, field_length,
field_alias, field_is_nullable, field_is_required, field_domain)

for (FIELD_NAME, FIELD_TYPE, FIELD_PRECISION, FIELD_SCALE, FIELD_LENGTH) in NEW_FIELDS:
print "Adding: " + FIELD_NAME +": " + FIELD_TYPE + " (" + FIELD_LENGTH +")"
gp.AddField_management(output_fc, FIELD_NAME, FIELD_TYPE, FIELD_PRECISION, FIELD_SCALE,
FIELD_LENGTH, "", "NULLABLE", "NON_REQUIRED", "")

17

print "done adding fields to: " + output_fc

H

Return GEOPROCESSING specific errors
except arcgisscripting.ExecuteError:
line, filename, err = trace()
gp.AddError("Geoprocessing error on " + line + " of " + filename + " :")
print gp.AddError("Geoprocessing error on " + line + " of " + filename + " :")
for msg in range(0, gp.MessageCount):
if gp.GetSeverity(msg) == 2:
gp.AddReturnMessage(msg)
print gp.AddReturnMessage(msg)
print "Geoprocessing error on " + line + " of " + filename + " :\n" + str(err)

Return any PYTHON or system specific errors
except:
line, filename, err = trace()
gp.AddError("Python error on " + line + " of " + filename)
gp.AddError(err)
print "Python error on " + line + " of " + filename + " :\n" + str(err)

H
#

H

Lol

PART 3

Process the Warren Group data table (SETB2.WG2009_SAVOYROWE) into a point feature class:
0) Clean Up: delete rows in output_fc

1) Create point and cursor objects

2) Open the input table

3) Loop through input table where FLAG = 1

assignthe x, & y properties of the pnt object,

propid value to the PROPID column,

create new row ssign pnt object to the shapefield,
#

H

#

save the insert.

print "+++++H+HHH AN

print "Processing LAT LON values to points....\n"
print "++++++Htttt bbb \D

initialize cursor and row objects to ensure that they exist when del statement executes in the finally clause
inRows, inRow = None, None
outRows = None

try:

Clean up: delete rows in output_fc

delRows = gp.deletefeatures(output_fc)

print "deleted features in: " + output_fc

HH print "+ RN

Second list of include fields -- only the ones we need

#INCLUDE_FIELDS = ["PROPID", "LAT", "LON", "FLAG"]
INCLUDE_FIELDS = ["PROPID", "X", "Y", "FLAG"]

18

Open searchcursor

inRows = gp.SearchCursor(input_tbl, "FLAG = 1", INCLUDE_FIELDS)
inRows.Reset

inRow = inRows.Next()

Open insertcursor

outRows = gp.InsertCursor(output_fc)

pnt = gp.CreateObject("Point") #creates the point object for the output_fc
feat = outRows.NewRow()

print "saving points to: " + output_fc+" ..."
print "++++++HHHH N

while inRow:
if inRow.GetValue(INCLUDE_FIELDS[3]) == 1: # "FLAG = 1" in the SearchCursor is not working, so I'm setting
my criteria here
Create new row for output feature
#feat = outRows.NewRow()

Assign the pnt object properties to the geometry field
feat.Shape = pnt

pnt.x = inRow.GetValue(INCLUDE_FIELDS[1])

pnt.y = inRow.GetValue(INCLUDE_FIELDS[2])

#print "LAT (x): " + str(pnt.x)

#print "LON (y): " + str(pnt.y)

#Assign attribute values
feat.PROPID = inRow.GetValue(INCLUDE_FIELDS[0])
#print "PROPID: " + str(feat[0])

Insert the feature
outRows.InsertRow(feat)

Get next feature in searchcursor
inRow = inRows.Next()

#print "getting next row"

print "done saving points to: " + output_fc

H

Led

Return GEOPROCESSING specific errors
except arcgisscripting.ExecuteError:
line, filename, err = trace()
gp.AddError("Geoprocessing error on " + line + " of " + filename + " :")
print gp.AddError("Geoprocessing error on " + line + " of " + filename + " :")
for msg in range(0, gp.MessageCount):
if gp.GetSeverity(msg) == 2:
gp.AddReturnMessage(msg)
print gp.AddReturnMessage(msg)
print "Geoprocessing error on " + line + " of " + filename + " :\n" + str(err)

Return any PYTHON or system specific errors
except:
line, filename, err = trace()
gp.AddError("Python error on " + line + " of " + filename)

19

gp.AddError(err)
print "Python error on " + line + " of " + filename + " :\n" + str(err)

These actions will always execute
finally:
Delete row(s) and cursor(s)
del inRow, inRows, outRows
gp.AddMessage("\n ** Cursor and row have been deleted ** \n")
print "\n ** Cursor and row have been deleted ** \n"

H
H

#

PART 4

Copy the attributes from input_tbl to output_fc
0)

1) Set up SQL statement

2) Run SQL using the sdeConnExecute object
#

H

Lol

print "+ N
print "copying attributes ..."
print "+++++H+HH AN

SQL to Update fields in output_fc with input_tbl values

for SAVOYROWE

#sqgl_updatepts = "UPDATE " + output_fc + " pts SET (pts.MAPREF, pts.SOURCE, pts.INACTVFL, pts.COUNTY,
pts.CITY, pts.STATE, pts.STNUM, pts.STNUMEXT, pts.STREET, pts.ZIPCODE, pts.LAT, pts.LON, pts. OWNER1,
pts.OWNER1LN, pts.OWNER2, pts.OWNER2LN, pts.STATEUSE, pts.YEARBUILT, pts.REALTOWN, pts. TOWN_ID,
pts.FLAG) = (select tbl. MAPREF, tbl.SOURCE, tbl.INACTVFL, tbl.COUNTY, tbl.CITY, tbl.STATE, tbl.STNUM,
tbl.STNUMEXT, tbl.STREET, tbl.ZIPCODE, tbl.LAT, tbl.LON, tb. OWNER1, tbl. OWNER1LN, tbl.OWNER2,
tbl.OWNER2LN, tbl.STATEUSE, tbl.YEARBUILT, tbl.REALTOWN, tbl. TOWN_ID, tbl.FLAG FROM " + input_tbl + " tbl
WHERE pts.propid = tbl.propid)"

for SAVOYROWE_BASIC

sql_updatepts = "UPDATE " + output_fc + " pts SET (pts.MAPREFQ9, pts.SOURCE, pts.INACTVFL, pts.COUNTY,
pts.CITY, pts.STATE, pts.STNUM, pts.STNUMEXT, pts.STREET, pts.ZIPCODE, pts.LAT, pts.LON, pts.OWNER,
pts.GC_SOURCE, pts.SQ_FT, pts.STATEUSE, pts.REALTOWN, pts.TOWN_ID, pts.FLAG) = (select tbl. MAPREFQ9,
tbl.SOURCE, tbl.INACTVFL, tbl.COUNTY, tbl.CITY, tbl.STATE, tbl.STNUM, tbl.STNUMEXT, tbl.STREET, tbl.ZIPCODE,
tbl.X, tbl.Y, tb. OWNER, tbl.GC_SOURCE, tbl.SQ_FT, tbl.STATEUSE, tbl.REALTOWN, tbl. TOWN_ID, tbl.FLAG FROM "
+input_tbl + " tbl WHERE pts.propid = tbl.propid)"

try:
Pass the SQL statement to the database.
sdeReturn = sdeConnExecute.Execute(sql_updatepts)

If the return value is a list (a list of lists), display each list as a row from the table being queried.
if isinstance(sdeReturn, list):

print "Number of rows returned by query: " + len(sdeReturn), "rows"

for row in sdeReturn:

print row

print "+++++++HHHH N
else:

If the return value was not a list, the statement was most likely a DDL statment.

Check its status.

20

if sdeReturn ==True:
print "ran sucessfully."
print "+ttt N
else:
print "FAILED."
print "+ N
Commit the changes
sdeConnExecute.CommitTransaction()
print "Commited Transaction\n"
print "+ttt D

print "done updating attributes "

#

H

Return GEOPROCESSING specific errors
except arcgisscripting.ExecuteError:
line, filename, err = trace()
gp.AddError("Geoprocessing error on " + line + " of " + filename + " :")
print gp.AddError("Geoprocessing error on " + line + " of " + filename + " :")
for msg in range(0, gp.MessageCount):
if gp.GetSeverity(msg) == 2:
gp.AddReturnMessage(msg)
print gp.AddReturnMessage(msg)
print "Geoprocessing error on " + line + " of " + filename + " :\n" + str(err)

except Exception, ErrorDesc:
print Exception, ErrorDesc

Return any PYTHON or system specific errors
except:
line, filename, err = trace()
gp.AddError("Python error on " + line + " of " + filename)
gp.AddError(err)
print "Python error on " + line + " of " + filename + " :\n" + str(err)

H#
H

free memory

del gp
print "done processing script"

